Trigonometric Functions

ES | EN

For an angle \(\theta\) measured from the positive x axis counter-clockwise on the unit circle (radius = 1), the coordinates of the intersection point with the circumference are \((\cos\theta,\;\sin\theta)\).

1. Sine  \(\bigl(\sin\theta\bigr)\)

2. Cosine  \(\bigl(\cos\theta\bigr)\)

3. Tangent  \(\bigl(\tan\theta\bigr)\)

Fundamental relationships

Pythagorean identity: \(\sin^{2}\theta+\cos^{2}\theta=1\).
Tangent in terms of sine and cosine: \(\tan\theta=\dfrac{\sin\theta}{\cos\theta}\).
Complementary angles: \(\sin\theta=\cos\left(\dfrac{\pi}{2}-\theta\right)\).

Note: All properties generalise to any radius by multiplying the projections by \(R\); on the unit circle \(R=1\), which simplifies the expressions.

Unit Circle

Function Plot (0° → 360°)