Maximum Likelihood Estimation (MLE) - Normal Distribution

ES | EN

The Maximum Likelihood Estimation (MLE) is a statistical method used to estimate the parameters of a probability distribution that best fit the observed data. In the context of a normal distribution, MLE is used to estimate the population mean (μ) and standard deviation (σ) from a sample of data.

Likelihood Function: The likelihood function for a normal distribution is given by:

\[ L(\mu, \sigma) = \prod_{i=1}^{n} \left(\frac{1}{\sigma \sqrt{2\pi}}\right) \cdot e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} \]

Sample Histogram

Parameter Comparison

Population Mean (μ)

0

Population Standard Deviation (σ)

1

Estimated Mean (MLE)

0

Estimated Standard Deviation (MLE)

1

Likelihood Function Contour Plots

Low Prob.
High Prob.